Exercice n°1.

- 1) Les nombres 5, 8, 21 sont les trois termes consécutifs d'une suite. Est-ce une suite arithmétique ou géométrique ? Quelle est la raison de cette suite?
- 2) Les nombres -5, 10, -20 sont les trois termes consécutifs d'une suite. Est-ce une suite arithmétique ou géométrique? Quelle est la raison de cette suite?

Exercice n°2. Les nombres suivants sont-ils en progression géométrique ? 346834 ; 3434 ; 34

Exercice n°3. Parmi ces suites, lesquelles sont géométriques :

$$\begin{cases} u_0 = 7 \\ u_{n+1} = u_n^2 \end{cases} \qquad \begin{cases} u_0 = 100 \\ u_{n+1} = u_n + \frac{6}{100} u_n \end{cases}$$

Exercice n°4. (u_n) est une suite géométrique de raison r.

- 1) On sait que $u_0 = 32$ et $r = \frac{1}{4}$. Calculer u_2, u_3, u_5, u_8 .
- 2) On sait que $u_1 = \frac{1}{125}$ et r = 5. Calculer u_0 , u_5 , u_7 , u_{20} .
- 3) On sait que $u_0 = 1$ et $u_1 = \frac{1}{3}$. Calculer r, u_2 et u_5
- 4) On sait que $u_0 = 3$ et $u_2 = 12$. Calculer r, u_1 et u_5
- 5) On sait que $u_1 = -1$ et $u_{10} = 1$. Calculer r, u_0 et u_5

Exercice n°4.

Montrer que ces suites sont géométriques, et préciser leur raison et leur premier terme.

$$u_n = (-4)^{2n+1}$$
 $v_n = 2^n \times \frac{1}{3^{n+1}}$ $w_n = (-1)^n \times 2^{3n+1}$

Exercice n°5.

En reconnaissant la somme des termes d'une suite géométrique, calculer :

1)
$$18 + 54 + 162 + \dots + 39366$$
 2) $\frac{1}{8} - \frac{1}{16} + \frac{1}{32} + \dots - \frac{1}{1048576}$

3)
$$\sqrt{2} - 2 + 2\sqrt{2} \dots - 64 + 64\sqrt{2} - 128$$

4) $2^7 + 2^8 + 2^9 + \dots + 2^{21}$
5) $-x + x^2 - x^3 + x^4 \dots - x^{17}$

Exercice n°6.

On suppose que chaque année la production d'une usine subit une baisse de 4%. Au cours de l'année 2000, la production a été de 25000 unités. On note $P_0 = 25000$ et P_n la production prévue au cours de l'année 2000 + n.

- a) Montrer que P_n est une suite géométrique dont on donnera la raison.
- b) Calculer Ps.
- c) Si la production descend au dessous de 15000 unités, l'usine sera en faillite, quand cela risque-t-il d'arriver si la baisse de 4% par an persiste? La réponse sera recherchée par expérimentation avec la calculatrice.

Exercice n°7.

La location annuelle initiale d'une maison se monte à 7000 €. Le locataire s'engage à louer durant 7 années complètes. Le propriétaire lui propose deux contrats :

1) Contrat n°1

Le locataire accepte chaque année une augmentation de 5 % du loyer de l'année précédente

- a) Si u_1 est le loyer initial de la $1^{\text{ère}}$ année, exprimer le loyer u_n de la $n^{\text{ième}}$ année en fonction de n
- b) Calculer le loyer de la 7^{ème} année
- c) Calculer la somme payée, au total, au bout de 7 années d'occupation

2) Contrat n°2

- Le locataire accepte chaque année une augmentation forfaitaire de $400 \in$ a) Si v_1 est le loyer initial de la $1^{\text{ère}}$ année, exprimer le loyer v_n de la $n^{\text{ième}}$ année en fonction de n
- b) Calculer le loyer de la 7^{ème} année
- c) Calculer la somme payée, au total, au bout de 7 années d'occupation
- 3) Conclure: quel contrat est le plus avantageux?